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This paper concerns the flow about a sphere placed in a weak shear flow of an inviscid 
’fluid. The secondary velocity resulting from advection of vorticity by the irrotational 
component of the flow is computed on the sphere surface, and on the upstream axis. 
The resulting lift force on the sphere is evaluated, and the result is confirmed by an 
analytical far-field calculation. The displacement of the stagnation streamline, far 
upstream of the sphere, is calculated more accurately than in previous papers. 

1. Introduction 
The magnitude of forces acting on small bubbles, droplets and particles in 

non-uniform and unsteady flows is still a subject of some controversy, even when the 
flow is inviscid and the shapes are spherical. The force on a stationary or moving 
sphere in a uniform unsteady flow is well known (e.g. Batchelor 1967). The force on 
a sphere in a non-uniform irrotational flow was first derived by Taylor (1928) and 
Tollmien (1938), and subsequently re-derived by a number of authors (see Auton, 
Hunt & Prud’homme 1987); but there has been no published calculation of the force 
on a sphere in an inviscid rotational flow. 

As well as being of fundamental interest for many problems in fluid mechanics, 
there are practical applications of knowledge of the forces on a sphere in inviscid flow. 
The chief one is in calculating the motion of bubbles in pure water when the Reynolds 
number is large, the wake is thin and the outer flow is close to that calculated in 
inviscid flow. Calculating the force on bubbles in rotational flow could lead to a better 
understanding of the distribution of bubbles in pipe flow and in vortices, situations 
of importance but whose analysis remains quite uncertain. 

Whereas the analysis of irrotational flow around a sphere is linear, that of 
rotational flow is, in general, nonlinear. However the latter analysis is approximately 
linear if the strength of the vorticity of the rotational flow is weak enough that the 
change in incident velocity across the sphere (Iwla) is much less than the relative 
difference between the velocity of the sphek Uand the incident velocity u, on the centre 
of the sphere, i.e. 

(1.1) I4 a 4 IU-u,l. 

Given the approximation (1 .l), Lighthill (1956a, b) showed how the velocity field 
can be calculated to a Grst approximation by calculating how the vorticity of the 
weak rotational velocity field is distributed by the primary, irrotational velocity field 
proportional to I U- u,l. Once the distorted vorticity is calculated, the secondary flow 

t Present address : Imperial Chemical Industries PLC, Central Toxicology Laboratory, Alderley 
Park, Macolesfield, Cheshire SKlO 4TJ, UK. 
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associated with these changes can be computed by the Biot-Savart law, and using 
the method of images to satisfy the appropriate boundary conditions on the sphere. 

In  this paper Lighthill's technique is followed in detail to compute the velocity 
field, the surface pressure and thence the force acting on the sphere. It is shown that 
certain arithmetic (or typographic) errors were made by Lighthill (1957) and Cousins 
(1969, 1970) in their calculations of the velocity and pressure fields. Neither author 
calculated the complete pressure field or the net force acting on the sphere. Analysis 
shows that this must be a lift force equal to 

(1.2) FL = CL$tU3p*( U - U o )  A 0, 

where p* is the fluid density and C ,  the lift coefficient. 

analysis given in 56 confirms that CL = t .  
flows by Auton et al. (1987). 

Computations of CL gives a value of 0.500, and a subsequent control volume 

This result is used in a more general analysis of spherical particles in non-uniform 

2. Statement of the problem 
A slightly sheared plane parallel flow approaches a fixed sphere of radius a. The 

problem is to calculate the velocity fieldu(x) around the sphere, the pressuredistribution 
on the sphere p, and the lift force FL acting on the sphere, subject to the assumptions 
that the viscosity is zero, the density is uniform and the shear is weak but uniform. 
Formally a solution is to be found to the governing equations 

( U ' V ) W  = ( O ' V ) U ,  (2.1) 

where 0 = v A U  (2.2) 

and v - u  = 0, (2.3) 

u = (uo+ Ay, 0, O)T as z+- co (2.4) 

and u * n = O  o n r = a ;  (2.5) 

subject to the boundary conditions 

uo and A are constants. We seek an approximate solution when 

aA 

UO 

B=-41 

(which is the first term in an asymptotic expansion as Aj-0) .  
The solution is based upon that of Lighthill (1956u, b, 1957). u is the sum of the 

irrotational (or primary) flow V past a sphere (i.e. a = 0) plus a small perturbation 
(or secondary) velocity field u, proportional to a,,, i.e. 

u =  v+u, (2.7) 

where v A v = o  

and V+ (uo, 0, O)T as r+ co 

V * n = O  o n r = a .  
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Therefore, in terms of spherical polar coordinates ( r ,  8, A)  as shown on figure 1, the 
solution to Vis 

v, = 0. I 
The primary-flow streamlines are defined by 

r2 sin28 1 -- = pi,  ( 3 (2.10) 

where po is the distance of the streamline from the axis far upstream of the sphere. 
From (2.1), (2.6) and (2.8) it follows that to first order u satisfies 

(V.V)W = (O'V) v (2.11) 

where 

and 

O = V A U  

O+ ( O , O ,  -A)T as x+- a, 
(2.12) 

where the second-order terms ( V O W )  o and ( o * V )  u of O(A2)  can be neglected when 
A 6 1. (This approximation is not uniformly valid; it is not valid in particular near 
to the stagnation points of the primary flow.) The solution to (2.11) for the vorticity 
of the secondary flow, subject to (2.12) is defined by the primary velocity field. 
Lighthill (1956b) showed how this solution for w can be expressed in terms of the 

da: dy dz &=-=--- - 
drift function t defined by 

v v, K 7  
X 

t--+0 asx - t - a .  
UO 

(2.13) 

(2.14) 

Notice that the surfaces of constant t describe the motion of planes initially 
perpendicular to the flow far upstream when convected by the primary flow. Cousins 
(1969) gives the following expression for t ,  which is convenient for numerical 
integration as it removes the singularity in the integrand when 0 +. R : 

r' 
uo t(p07 ') = loz (( 1 + + ( ~ ~ / r ' ~ ) )  sin 8' -A) sin2 6 dB' +po cot 6, (2.15) 
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e 
0.00 

10.00 
20.00 
30.00 
40.00 
50.00 
60.00 
70.00 
80.00 
90.00 

100.00 
110.00 
120.00 
130.00 
140.00 
150.00 
160.00 
170.00 
180.00 

p/a  = 0.1Ooo 
- 13.0203 
-3.3288 
-0.6889 

0.0209 
0.3650 
0.5828 
0.7345 
0.8393 
0.9045 
0.9333 
0.9277 
0.8893 
0.8205 
0.7238 
0.6025 
0.4602 
0.2999 
0.1216 
0 

0.2500 0.50oO 

- 4.7568 - 1.8393 
- 3.5797 - 1.7331 - 1.5231 - 1.2732 
- 0.5039 -0.6988 

0.0239 -0.2362 
0.3437 0.0992 
0.5555 0.3380 
0.6980 0.5040 
0.7880 0.6114 
0.8334 0.6687 
0.8390 0.6812 
0.8079 0.6527 
0.7431 0.5865 
0.6474 0.4860 
0.5235 0.3564 
0.3740 0.2089 
0.2022 0.0744 
0.0390 0.0068 
0 0 

TABLE 1. q , / A  sin h 

1 .oooo 
-0.4006 
-0.3916 
-0.3493 
-0.2578 
-0.1257 

0.0203 
0.1556 
0.2648 
0.3402 
0.3787 
0.3805 
0.3481 
0.2869 
0.2066 
0.1220 
0.0525 
0.0129 
o.oO09 
0 

2.oooo 
- 0.0240 
-0.0235 
- 0.0208 
-0.0129 

0.0025 
0.0249 
0.0511 
0.0759 
0.0941 
0.1018 
0.0978 
0.0834 
0.0623 
0.0396 
0.0203 
0.0076 
0.0017 
o.Ooo1 
0 

where r’ is the positive root of 
r ’ z ( 1 - g )  = p i  cosecze. 

The vorticity is then given in terms oft  by (Lighthill 19563, equation (58)) 

(2.16) 

(2.17) 

r sin8 

Po 
W A  =-A COSA-. I 

Notice the very simple form of wA. The ring vorticity is independent of t ,  as the 

It is convenient to subtract from o the uniform oncoming vorticity field. So we 

o1 = w - o 0 ,  (2.18) 

axisymmetric primary flow causes stretching, but not rotation, of ring vorticity. 

define 

where I woY = -A sinh sine, 

woe = - A sin 8 cos 8, 

wOA = -A C O S ~ .  

(2.19) 

Numerically calculated values of o1 and r/a as functions of po/a and 8 are given 
in tables 1 4 .  The values of q, agree with those given by Lighthill (19563) to within 
0.1. Lighthill’s results are not as accurate as those given here, as he used an 
asymptotic approximation to calculate t, rather than a numerical integration of 
(2.15). 
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e 

10.00 
20.00 
30.00 
40.00 
50.00 
60.00 
70.00 
80.00 
90.00 

100.00 
110.00 
120.00 
130.00 
140.00 
150.00 
160.00 
170.00 
180.00 

0 
p/a = 0.1000 

0 
2.1611 
3.9730 
5.5280 
6.8714 
7.9870 
8.8498 
9.4376 
9.7345 
9.7329 
9.4336 
8.8463 
7.9896 
6.8902 
5.5829 
4.1105 
2.5269 
0.9261 
0 

0.2500 0.5000 

0 0 
0.7837 0.3057 
1.5256 0.5716 
2.1547 0.8122 
2.6622 1.0150 
3.0562 1.1693 
3.3377 1.2724 
3.5052 1.3243 
3.5578 1.3266 
3.4963 1.2815 
3.3244 1.1924 
3.0487 1.0639 
2.6791 0.9018 
2.2288 0.7137 
1.7146 0.5099 
1.1595 0.3053 
0.6009 0.1268 
0.1363 0.0200 
0 0 

TABLE 2. wl0/A sinA 

1 .oooo 
0 
0.0672 
0.1213 
0.1601 
0.1889 
0.2121 
0.2305 
0.2427 
0.2474 
0.2434 
0.2302 
0.2077 
0.1762 
0.1372 
0.0934 
0.0508 
0.0183 
0.0026 
0 

2.oooo 
0 
0.0039 
0.0059 
0.0054 
0.0031 
0.0008 
0.0003 
0.0024 
0.0069 
0.0127 
0.0180 
0.0212 
0.0213 
0.0181 
0.0126 
0.0067 
0.0023 
0.0003 
0 

e 

10.00 
20.00 
30.00 
40.00 
50.00 
60.00 
70.00 
80.00 
90.00 

100.00 
110.00 
120.00 
130.00 
140.00 
150.00 
160.00 
170.00 
180.00 

0 

p / a  = 0.10oO 
0 

-0.9277 
-2.5176 
-4.0667 
-5.4797 
-6.7040 
-7.6987 
-8.4324 
-8.8819 
-9.0333 
-8.8819 
- 8.4324 
-7.6987 
-6.7040 
-5.4797 
-4.0667 
-2.5176 
-0.9277 

0 

0.2500 0.5000 
0 0 

-0.1378 - 0.0203 
-0.6096 -0.1325 
-1.1663 -0.3247 
- 1.7007 -0.5420 
- 2.1729 -0.7484 
-2.5603 -0.9238 
-2.8474 - 1.0563 
- 3.0238 - 1.1385 
- 3.0833 - 1.1663 
- 3.0238 -1.1385 
-2.8474 - 1.0563 
-2.5603 - 0.9238 
- 2.1729 -0.7484 
- 1.7007 -0.5420 
-1.1663 -0.3247 
-0.6096 -0.1325 
-0.1378 -0.0203 

0 0 

TABLE 3. w1JA cosh 

1 .m 

-0.0026 
-0.0194 
-0.0575 
- 0.11 29 
- 0.1757 
-0.2352 
-0.2832 
-0.3141 
-0.3247 
-0.3141 
-0.2832 
-0.2352 
-0.1757 
- 0.1129 
- 0.0575 
-0.0194 
- 0.0026 

0 

0 

2 . m  

-0.0003 
-0.0025 
-0.0077 
-0.0162 
- 0.0270 
- 0.0384 
-0.0483 
-0.0551 
-0.0575 
-0.0551 
-0.0483 
-0.0384 
-0.0270 
-0.0162 
-0.0077 
-0.0025 
-0.0003 

0 

0 

3. The secondary velocity field 
The secondary velocity field u consists of four parts: 
u& the uniform shear-flow perturbation; 
4, an irrotational flow field such that u, n = (ug + 4) n = 0 on the surface of the 

u:y the Biot-Savart velocity field due to the vorticity m1 ; 
sphere ; 
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e 
10.00 
20.00 
30.00 
40.00 
50.00 
60.00 
70.00 
80.00 
90.00 
100.00 
110.00 
120.00 
130.00 
140.00 
150.00 
160.00 
170.00 

p/a  = 0.1Ooo 
1.1101 
1.0285 
1.0133 
1.0081 
1.0057 
1.0044 
1.0038 
1.0034 
1.0033 
1.0034 
1.0038 
1.0044 
1.0057 
1.0081 
1.0133 
1.0285 
1.1101 

0.2500 
1.6380 
1.1765 
1.0832 
1 .Om4 
1.0355 
1.0278 
1.0236 
1.0215 
1.0208 
1.0215 
1.0236 
1.0278 
1.0355 
1.0504 
1.0832 
1.1765 
1.6380 

TABLE 4. 

0.5000 
2.9379 
1.6556 
1.3247 
1.1995 
1.1412 
1.1107 
1.0941 
1.0857 
1 .0832 
1.0857 
1.0941 
1.1107 
1.4112 
1.1995 
1.3247 
1.6556 
2.9379 

r / a  

1 .oOOo 
5.7738 
2.9806 
2.1149 
1.7314 
1.5348 
1.4263 
1.3656 
1.3344 
1.3247 
1.3344 
1.3656 
1.4263 
1.5348 
1.7314 
2.1149 
2.9806 
5.7738 

2.oooo 
11.5213 
5.8622 
4.0309 
3.1619 
2.6813 
2.3980 
2.2312 
2.1427 
2.1149 
2.1427 
2.2312 
2.3980 
2.6813 
3.1619 
4.0309 
5.8622 

1 1.52 13 

ui, an irrotational flow field such that u, n = (uf + u:) n = 0 on the surface of the 
sphere. 

ug and t$ are easily determined. u: has velocity potential 

(3.1) 
Aa5 
3r9 

4; = - sin8 cos8 cash 

uOr= ArsinOcosecosA and uo is given by 

Aa5 
Vo1 = -- 3r4 cos 0 sin A. 

Lighthill (1956~)  has shown that Ui, is the BiotiSavart field of a system of vorticity 
within the sphere. Corresponding to an element of vorticity with strength 

(mir, w ~ B , @ ~ A )  dV 

at the point ( r ,  8, A)  external to the sphere, there is an image system of vorticity with 
strength U U 

(? u l r ,  -,mle, -;wlA)d~ 

at the image point (a2/r ,  8, A) together with a uniform line vortex of strength 

per unit length between the centre of the sphere and the image point. Rewriting this 
expression given in Lighthill (1956~)  in terms of vectors, the BioeSavart integral 
for u, becomes 

ul(r) = - dr’d8’dh’ r f2  sin 8’F(r, r’), (3.3) 
4.11 ‘s 
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and 

- 2(0, r’) r‘ 
0, = 0,- ?.’2 * 

4. Evaluation of u, 
The main computational difficulty arises from the evaluation of the three- 

dimensional Biot-Savart integral (3.3) for ul(r).  The in&grand has singularities at 
r’ = r and also as r’+u, or @‘-to, or 8’+x, where (at /apo)e,  and consequently o1 is 
singular. 

We shall require the values of ul(r) on the surface of the sphere and also on the axis 
where 8 = 0 or x .  Consequently, it is convenient to perform the integration with 
respect to pk, rather than r‘, for when this is done, all the singularities are on the 
surface pi = 0. We rewrite the integral, then, in the form 

& Jam dr’ Jon de’ J:x dA’ r f2  sin 8’ F(r, r’) 

= d J o w d p ~ J ~ d 8 ’ ~ o  2x dA’rt2 sin8 

where r’ = r’(& el) 

is the positive solution of (2.16), and 

Thus, to determine q ( r )  at any point, one must perform a three-dimensional 
integration of the vector function F. Some simplification is possible, however, using 
the axisymmetry of the system. When r = a or when 8 = 0 or x 

when A = 0 or x ,  we also have 

and when A = 01 

v,, = 0; 

VIA = 0 

Vl/j = 0. 

F(r, r’) = wl(r’) G(r,  r’) 

F(r, r’) is a linear function of m,(r’), so we can write it as 

(4.3) 

If G is written in terms of the local polar coordinate directions at the point r’, then 
G depends upon A and A’ only through the combination A-A’ .  As ml(t’)  can be 
written in the form 

(4.4) 

(4.5) 

wli(p6, e’, A’)  = wla(p;, e’, 0) cos A’  pi, B’, in) sin A’ 

vlr(r,  8, A )  = vlt(r, 8 , O )  cash + vlt(r, 8, in) sin A. 

where i stands for r‘, 8’ or A‘, i t  follows that 
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This is a very useful result. Instead of integrating the vector F(r, r’) over r‘ for each 
value of 8 and h where ul(a,8,A) is required, one only need integrate the scalar 
quantities Fe(r, r’) for each value of 8 with A = 0, and FA(r, r’) for each value of 8 
with h = $ and use the following equations: 

This greatly reduces the effort required to calculate u, over the surface of the sphere, 
The numerical integrations cannot be performed satisfactorily by a standard 

numerical integration package because of the singularities of the integrand. Special 
techniques were developed for the integration and these will be described in the rest 
of this section. For definiteness we shall describe the calculation of v&, 8,O). The 
calculation of wlA(a, 8, in) and the velocity on the axis is very similar. 

4.1. The A’ integration 
The integration with respect to A‘ is performed first. We denote the result of this 

1 2n 
integration by 

4 ( r , p i ,  8’) = 4R jo U’ r’z sin 8’ 7 ~ ~ ( r ,  r’,  el, A’). 

The integrand has a sharp peak near A’ = h when po is small. To handle this 
integration efficiently and accurately we use a change of variable from A‘ to 6, where 

(4.8) 

(3 (4.7) 

tan (+A’) = c+ tan (M) 
r2 + r’2 - 2rr’ cos (8 + el) 
r2+r‘2-2rr’ cos (8-0’)’ 

with C =  (4.9) 

and integrate using an adaptive routine from the NAG library (DOlAJF), which is 
designed to integrate functions with singularities, or near-singular behaviour. The 
calculations were performed with a requested relative error tolerance of 
Generally the accuracy attained was better than this, but for a few values of pi and 
el this accuracy could not be attained due to rounding error; however, in these cases 
the absolute value of the integral is small and makes a negligible contribution to the 
secondary velocity. 

4.2. The el integration 
When pi is small it  is found that q ( r , p i ,  el) has a sharp spike around the value of 
el a t  which 

s2 = r2+r‘2-2rr’  cos(0-8’) (4.10) 

is minimized with r’ = r’(pi, el). The spikiness of the integrand may be substantially 
reduced by the following change of variable: 

f I  = fI0-a arcsinh (B‘gd), - 

where b and S are chosen such that 

(4.11) 

(4.12) 
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tz  A 

B', 5 
FIGCRE 2. The smoothing of the 8' integrand &(r,p;, 6'') caused by change of variable from 8' to 

6, (4.13), T = a, 6 '=  67t/6, A = 0, pi = 0.113. 

and u and 5, are chosen such that 

5 = 0 when 8' = 0, 

and = R when 8' = A. 

With this change of variable the integral is transformed to 

(4.13) 

Xotice that cosh ([-E0/a) has a minimum a t  the place where q ( r ,  p i ,  6') has a peak. 

The integration was performed using the same software as the A' integration, and 
(To be exact, a copy of the routine with different 

The smoothing effect of this change is shown in figure 2. 

the same error tolerance, 
subroutine and variable names was used, as Fortran is not a recursive language.) 

We shall denote the result of the 8' integration by 4 ( r , p i ) .  

4.3. The pi  integration 
The most obvious difficulty in the pi integration is that the range of integration is 
infinite. A further complication arises at the stagnation points, where r = a,  8 = 0 
or A, as F'(r,pi) becomes infinitely large as pi tends to zero. These difficulties are 
handled using a Gauss-Rational quadrature scheme, using the NAG routine DOlBCF 
to evaluate the weights and abscissae. The scheme is exact for integrals of the form 

(4.14) 

where a > 0 ,  d - l > c > l  

and Pn is a polynomial of order 2n - 1 or less, n being the number of evaluation points. 
The values of a,  c and d are chosen by the user on the basis of his knowledge of 
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1 G 

0.01 

0.01 0.1 1 .o 10.0 

P; 

FIGURE 3. Logarithmic graph of integrand of the pi integration q ( r ,  pi )  when r is, (I), the front and, 
(11), the rear stagnation point on the sphere. Notice the singular behaviour as p;+O. The dashed 
curves are the asymptotic approximations (4.17) and (4.18) and the dot-dashed curve is (4.19). 

the integrand. Except at the stagnation points the asymptotic behaviour of F2(r,pi)  
for small and large pi is t 

Pf O(1) asA+O, 
a 

as----foo, A Pi  
a 

(4.15) 

and the chosen values of a, c and d are 1, 0 and 2 respectively. A t  the stagnation 
points the behaviour of F, is singular as pi+O and the numerical values plotted in 
figure 3 suggest that 

a 
(4.16) 

a 

and corresponding values of c and d are -t and $ respectively. The asymptotic 
behaviour of 4 ( r , p i )  for small pi can also be obtained from the integral expressions 
given by Lighthill (1957, equation (10.13)). The dominant contribution to F2 comes 
from the vorticity at points very close to T and detailed analysis, not given here, shows 
that 

at the front stagnation point r = a, 8 = x ,  and 

(4.17) 

(4.18) 
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ve(a, 8,O) vA(a, 8, t)  
Aa Aa 

e 

0 -1.1803 1.1803 
10 -0.2284 0.5343 
20 0.0255 0.3118 
30 0.0706 0.1917 
40 -0.0152 0.1393 
50 -0.1734 0.1376 
60 -0.3525 0.1747 
70 -0.5079 0.2416 
80 -0.6050 0.3302 
90 -0.6207 0.4335 
100 -0.5451 0.5448 
110 -0.3817 0.6583 
120 -0.1461 0.7685 
130 0.1361 0.8705 
140 0.4331 0.9601 
150 0.7104 1.0337 
160 0.9357 1 .Of383 
170 1.0824 1.1220 
180 1.1327 1.1327 

ve(a, 8, A )  = v,(a, 8,O) cosA 
vA(a, 8, A) = vA(a, 8,$) sin h 

TABLE 5. Secondary velocity on sphere surface 

1 .oooo 1.1327 
1.0196 0.9469 
1.0824 0.7383 
1 .2027 0.5185 
1.4142 0.3221 
1.8Ooo 0.1704 
2.6131 0.07032 
5.1258 0.01650 

vr(r, x ,  0) = 0 
vn(r, x ,  0) = 0 

TABLE 6. Secondary velocity on upstream axis 

at the rear stagnation point, r = a, 8 = 0. The constant C is given by 

C = 33B(g, %) - 0.2764, 

where B is a beta function (Abramowitz & Stegun 1965, p. 258). The behaviour as 
pi+ 00 can also be determined, and 

(4.19) 

for both the stagnation points. A contribution 7c/64p? comes from the 8-vorticity 
as stated by Lighthill (1957, equation 21) and the remaining 4x/64pZ from the 
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FIQURE 4. Secondary 8-velocities on the surface of the sphere in the plane of symmetry: 
v&, 8,O)lAu: ., the numerical results of this paper, 0, Cousins (1969) numerical results, and the 
curve + is Hall’s (1956) approximate analytical results. 
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FIQURE 5. Secondary A-velocities on the surface of the sphere: vA(a ,8 ,~n) /Aa:  ., the numerical 
results of this paper; 0, those of Cousins (1969). 
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FIGURE 6. Downwaah on upstream axis times T a l a s :  (v0(r, x ,  O)/Aa) (P/a*) : D, numerical results of 
this paper ; + , Hall’s (1966) approximation, and the daahed lines are the aaymptotic limits of the 
two graphs. 

FIQURE 7. Diagram showing directions and magnitudes of secondary velocities in the oncoming 
shear flow and on the sphere surface. 

A-vorticity. These asymptotic formulae are also plotted on figure 3 and the close 
agreement between the asymptotic and numerical results provides an independent 
check upon the calculation. 

The pi integrations were performed with 32, or in some cases 64, points of 
evaluation. 

The calculated values of V e  and v, (including v,,) on the surface of the sphere, and 
the downwash, ve on the upstream axis are given in tables 5 and 6. As stated above, 
the A’ and 0’ integrations are accurate to at least four significant figures. Halving 
the number of integration points used for the pk integration gives results that differ 
from those of tables 5 and 6 by less than The values given in the tables are 
believed to be accurate to at least three significant figures. 
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These results are plotted on figures 4, 5 and 6. To give a clearer picture, the 
magnitude and direction of the secondary velocity at certain points on the sphere 
surface and on the upstream axis is shown on figure 7. 

5. The lift force on the sphere 
By Bernoulli’s theorem, neglecting gravity, 

h = p+lglu12 

is constant along the streamlines. Therefore, on the surface of the sphere the pressure 
is 

where p, and uo are the pressure and velocity far upstream on the stagnation 
streamline. 

P = Po+lgl~o12-~l~12~ (5.1) 

To first order in the oncoming vorticity, A,  

and the lift force on sphere is therefore 

= p 6 d8 s,”” dh a2 sin O#uo sin 8 w&, 8,O) cos An, 

where S is the surface of sphere and (4.6) has been used for ve(a, 8, A).  
In Cartesian coordinates 

sin 8 sin h 

By inspection Fy is the only non-zero component of FL and 

3K F = -  p * 2  a uo s‘ d8 sin3 8 w,(a, 8,O) 
y 2  0 

x 2.09454p*asuo A ,  

and in vector notation 

I F’ = CLp*$u3u0 A w,, 

CL x 0.500035. 

(5.3) 

(5.4) 

(5.5) 

This result is obtained by numerical integration using Simpson’s rule and the values 
of given in table 5. 

This result is used in developing a general expression for the lift force and the total 
force acting on a small sphere in an arbitrary rotational straining flow, by Auton 
et al. (1987). 
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6. An analytical evaluation of the lift coefficient 
The reader will have noticed that the computed value of the lift coefficient is 

remarkably close to +. In  this section we present an analytical argument to prove that 
the value is exactly t.  

Applying the momentum-integral theorem to a volume surrounding the sphere we 
find that L 

-F - @*(u*n)u+pn)dS, 4 
where S is the external surface of the volume of integration. It is convenient to choose 
for S a deformed cylinder, whose curved surface is parallel to the streamlines of the 
primary flow, and bounded axially by circular disks of radius Z centred on the x-axis 
at positions z = &X (see figure 8). Z and X are chosen such that 

U 
a < Z < - ,  

A 

X % Z .  (6.3) 

Using Bernoulli’s theorem we can expand p in terms of the velocity 

p = po+14p*(U-m)e-1 4p * (u)z, (6.4) 

where u-O0 is the velocity far upstream on the same streamline and po is the uniform 
upstream pressure. The total velocity is made up of the irrotational primary flow V, 
proportional to u, and a secondary velocity uy proportional to A. The terms involving 
only Vcontribute nothing to the total integral as there is no net force due to a uniform 
streaming motion, the interaction of Vand t) leads to a force in the y-direction, which 
is proportional to A. In  the following analysis we shall consider only those terms that 
are first order in A and only the y-component of the force integral. 

Consider now the far field of u. In  the wake, far downstream of the sphere, the 
vorticity is aligned in the z-direction, with 

dX 
o, = A sinh- 

do 
(Lighthill 19563) where 

X = Lim uo t(z, p).  
z-*m 

This vorticity induces a flow in the (y, 2)-plane, given by 

I dp’ X(p’) -t( 1 - cos 2h) X@) 

w, = 

independent of x. Outside the wake region, the secondary flow far from the sphere 
is given by 

(6.7) 
AaS 
2rS 

u - Ap coshe,+-(-p 

(Lighthill 19563). We can now evaluate the leading-order terms in the force integral. 
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FIQURE 8. Sketch showing volume of integration used in the analysis of $6. 

On the upstream disk all terms of the integral vanish asymptotically, as z/u+ co . 
On the curved surface S,  the leading-order term is 

r 

where 

and 

- lzy (u  - 1)- " ) v- " ds, 
p* Js, 

V-" = uoex 

v- O0 = Ap- ex cos A 
(6.9) 

(6.10) 

are the asymptotic limits of V and 0, and p-" of p, as z+.- 00 along a streamline. 
To leading order, from (6.7) and (6.10) 

Apa3 cos h 
6r3 

(v -  u - y x  - (6.11) 

(6.12) 
u3 

as P-P-" - @P' 

To leading order we can approximate p by Z, and the integral becomes 

Au3Z COB hu, 
p* 6(Z2 + z2)f 

&J,' c dA( -cos A) 
-X  

On the downstream disk S, the leading-order term is 

(6.14) 

and substituting for v,, its asymptotic form in the far downstream wake region (6.6), 
this becomes 

Acos2h P 
P* JozP d~ JO2' a uo (- pa Jo p' dp'X@') -#A( 1 - cos 2 A )  X@)) 

--&,Ap*JmpdpX(p) =-&,Ap*Vn =-$a3p*uoA, (6.15) 
01 

where V, = #V is the drift volume associated with the primary flow (Darwin 1953). 

F, = -ina3p*uo Ae, (6.16) 

and c, = a. (6.17) 

Putting the separate contributions together, we conclude that 

7. Discussion 
In  this paper Lighthill's secondary-flow method is used to expose features of the 

flow around a stationary sphere placed in a simple shear flow. The secondary flow 
on the sphere surface has been calculated numerically, and used to estimate the 
resulting lift force on the sphere. 
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Lighthill’s work is mainly concerned with calculating the secondary velocity on 
the upstream axis, which he calls the downwash, D(r),  and the displacement of the 
stagnation streamline 6; 6 is used to correct the results of Pitot-tube velocity 
measurements from sheared velocity fields. In our notation 

(7 .1 )  

Wherever possible, the results of this paper have been compared with Lighthill’s and 
this has provided a check upon the analysis. This comparison has shown a couple 
of minor errors in Lighthill (1957, hereinafter denoted L). 

In the final, pi, integration for D(r),  Lighthill claims that the integrand De(r,p;) 
tends to zero as pi+O (L, p. 500). (The suffix 8 here denotes the BioeSavart 
contribution to D(r) from u18 - he obtains the contribution from ulh analytically and 
D,(r,p;)+O as claimed.) This is only true, however, when T > a ;  at r = a careful 
asymptotic analysis of the expression given by Lighthill (L, equation 13) shows that 

D(r) = Ve(r ,  X ,  0). 

D(a, p i )  - ~ p i - t  as pi + 0. (7.2) 

This result is confirmed by the numerical results shown in figure 3. Consequently 
Lighthill’s value for D(a) of 0.97Aa is too small by 15% compared with our result 
of 1.133Aa. A t  larger values of r Lighthill’s results are confirmed: he gives 

D ( d 2 a )  = 0.33Aa, (7.3) 

compared with 0.322Aa found in this paper, and Lighthill’s asymptotic result (L, 
equation (22)) 

is also confirmed by our numerical results. 
The displacement of the stagnation streamline is given by (L, equations (31), (32)) 

cosec a cot a da, (7.5) 
= J-m D(r) dr = i J* D(a coseca) 

u0 a ( 1 - - 3 / r s ) i  uo (1-sinaa)f 

where a = arcsin a/r .  Lighthill estimates 6 using Simpson’s rule, with interval i x  and 
the second integral above, and finds 

Aas x 
6 X --{(isi+7.0360(1/2a)+#D(a)). 

uo 12 

However, the coefficient of D(a) should be $ here and Lighthill’s estimate of D(a) 
is itself too small. The effect upon 6 is quite small, though, and Lighthill’s value of 
0.89Aaa/uo is quite close to our estimate, based upon the figures in table 6,  of 
0.938Aa3/uo; his value of 6 is accurate to one decimal place, despite these errors, 
which is all the accuracy he claims. 

A similar calculation to that given here has also been made by Cousins (1969, 
1970). He used Lighthill’s theory to calculate numerically the secondary velocities 
over a portion of the forward surface of the sphere, where 8 > 120O. He claims an 
accuracy of one decimal place in his values of tr but makes no mention of any special 
procedures being used because of singularities of the Biot-Savart integrand. The 
accuracy of his results must be questioned as he obtains the same, erroneous, value 
as Lighthill, 0.97Aa, for the downwash at the front stagnation point. He does not 
appear to have noticed the trigonometric relations (4.6), which would have 
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substantially reduced his computational labours. In terms of Cartesian coordinates, 
as used by Cousins, the relations (4.6) imply 

vJr ,  6, A)  = vJr, 6,O) cos A, 

vJr ,  6, A )  = vJr ,  6,O) cos2 A +v,(r, 6, in) sin2 A, 

v,(r, 6 , A )  = v,(r, O , $ )  sin2A. 

(7.7) 1 
Alternatively, these relations can be derived quite easily from the expressions given 
in Appendix I of Cousins’ (1969) paper, but they are not satisfied by Cousins’ results, 
even allowing an error of kO.1 on each figure. For comparison some of his results 
are plotted on figures 4 and 5. 

Hall (1956) has found an approximation to the secondary velocity in the plane of 
symmetry. He assumes that the two-dimensional divergence of v in this plane is zero 
so that 

av, avu 
ax ay 
-+- = 0. 

This is only an approximation, as av,/az =+ 0 in general. The curl of the velocity in 
this plane is 

with w, the same as that used in this paper, 

-A 
(1 - a3/r3) 

w, = (7.10) 

With this approximation an analytic solution in the plane of symmetry can be found, 
viz. 

(7.11) 

2 = -(---) 1 r a3 sin28 
Aa 2 a r3 

For comparison with our results these velocities are also plotted on figures 4 and 6. 
Hall’s method generally overestimates the downwash and, hence the displacement 
6. Using Hall’s theory one finds 

@ x  1.24 
Aa2 

(7.12) 

which is 30 yo larger than our result. On the surface of the sphere, Hall’s values of 
ve are surprisingly close to ours for 6 > in, but on the downstream face of the sphere, 
the other vorticity components, w,. and wo, neglected in Hall’s theory, become more 
significant and the results diverge. The lift coefficient, estimated using Hall’s values 
for ve, is 0.375 and is about 30 % smaller than the result of this paper. 

The numerical value for the lift coefficient is confirmed by a more elegant analytical 
argument, using the momentum theorem. It is instructive to reiterate the assump- 
tions underlying this analysis. The momentum theorem is applied to a control volume 
surrounding the sphere, which is a slightly deformed cylinder, the generators being 
streamlines of the primary flow. An approximation to the momentum integral is then 
found, using far-field results for the secondary flow, published by Lighthill 1956b, 
in the case that the cylinder diameter is much larger than the sphere diameter, and 
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its length much greater than its diameter. However, as Lighthill (1957) has pointed 
out the approximations to the far-field secondary velocity are only valid when 

a 4 r 4 a /A .  

The expression for the lift force is thus found as an approximation to a momentum 
integral over a finite volume, and should be viewed as the first term in an asymptotic 
expansion in A. 

To obtain this result, it  is necessary to assume that the cylinder is much longer 
than its diameter. This is analogous to Darwin’s (1953) observation that, to calculate 
the drift volume of the sphere moving through an infinite fluid at rest, it is necessary 
to take limits in the %-direction and in the p-direction, in that order. This same point 
has recently been reiterated by Benjamin (1986). It is interesting to note, however 
that the integral for FL has leading-order contributions from the curved surface S, and 
from the downstream disk S,, whilst the drift volume has contributions only from 
the upstream and downstream disks. 

In a later paper (Auton et al. 1987) it will be shown how the result found here for 
FL may be generalized to more complex, straining and time-dependent inviscid flows. 

In a real fluid, viscosity will act to cause a drag force opposing the relative motion 
of the fluid, and may cause separation of the flow from the rear of the sphere. The 
effect of flow separation is difficult to determine, but is likely to be less significant 
for bodies with mobile surfaces, such as bubbles and drops, than for rigid particles. 

The effects of finite drag on the motion of bubbles is discussed in Thomas et al. 
(1983), and some of the experimental data on the forces on spherical bodies is reviewed 
in Auton (1984). 
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